USTALONY NIEŚCIŚLIWY PRZEPŁYW TRÓJWYMIAROWY Z ODERWANIEM

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się ze sposobem modelowania przepływów trójwymiarowych oraz obróbka trójwymiarowych wyników graficznych.

Streszczenie

Zadanie polega na wyznaczeniu opływu wokół skrzydła typu delta ustawionego pod dużym katem natarcia (30°), wyposażonego w śmigło, umieszczone w szczelinie. Przepływ odbywa się w zamkniętej przestrzeni tunelu aerodynamicznego i posiada płaszczyznę symetrii. Wymiary tunelu 150x200x600 cm. Przepływającym czynnikiem jest powietrze o prędkości V=10m/s i ciśnieniu p=101325 Pa. Model rozważany w tym ćwiczeniu jest właściwie półmodelem, w którym odwzorowano tylko połowę skrzydła delta oraz połowę kręgu śmigła. Tym samym założono przepływ symetryczny względem płaszczyzny XZ.

Przebieg ćwiczenia

Geometria

- 1. W środowisku workbench stwórz nowy system obliczeniowy Fluid Flow(Fluent).
- 2. Otwórz **Design Modeler** klikając prawym przyciskiem myszy na komórkę **Geometry**.
- 3. Ustaw jednostki na **centymetry**

Figure 1: Rys.1. Szkic 1 na płaszczyźnie X-Y

- 4. Stwórz nowy szkic na płaszczyźnie **X-Y**. Narysuj geometrię połowy skrzydła delta tak jak na załączonej ilustracji.
- 5. Stwórz **powierzchnię** na podstawie utworzonego szkicu.
- 6. W ten sposób utworzyliśmy bardzo proste skrzydło delta a dokładnie jego połowę. Płaszczyzna X-Z będzie lustrzanym odbiciem skrzydła.
- 7. Teraz trzeba utworzyć powierzchnię śmigła zastępczego.
- 8. Utwórz szkic na płaszczyźnie $\mathbf{Y}\text{-}\mathbf{Z}$
- 9. Wewnątrz szkicu, za pomocą narzędzia **Arc by Center**, stwórz półokrąg według załączonej ilustracji.
- UWAGA: Aby utworzyć powierzchnie śmigła, obwód musi być zamknięty.
- Nie zapomnij domknąć półokręgu linią!
- 10. Utwórz **powierzchnię** na podstawie szkicu.

Figure 5: Rys.5. Sposoby wskazania osi obrotu

- W **menu płaszczyzn** w drzewie historii (tam gdzie znajdują się szkice), wybieramy **płaszczyznę prostopadłą** do naszej osi obrotu.
- W oknie graficznym, na naszym rysunku, znajdują się przerywane linie reprezentujące osie układu współrzędnych. Klikamy na odpowiednią oś. Kolorowy układ współrzędnych znajdujący się w dolnym prawym rogu okna graficznego, służy tylko do manipulacji kamerą.

Po zaznaczeniu osi, w oknie graficznym pojawią się **strzałki wyboru kierunku osi**. Klikamy aby odpowiednio zorientować oś obrotu. Oś musi być tak zorientowana, żeby nasze "skrzydło", obracając się, zadarło "nos" w kierunku osi Z.

Wpisujemy kąt obrotu naszych powierzchni.

Generate

- 12. Ostatnim krokiem jest utworzenie objętości powietrza.
- 13. W menu kontekstowym **Create** przejdź do menu **Primitives** i wybierz opcję **Box**.

_	Początek	Diagonale
Χ	$-250~\mathrm{cm}$	$600 \mathrm{~cm}$
Y	$0 \mathrm{cm}$	$150~{ m cm}$
Ζ	-80 cm	$200~{\rm cm}$

Warto ustawić Operation - Add frozen Generate

Jeżeli figura nie będzie przezroczysta od opcji **Add frozen** i wszystko

14. Z powstałych elementów tworzymy złożenie. We wspomnianym wcześniej menu elementów, ostatnim w drzewie historii, wybieramy wszystkie elementy i za pomocą prawego przycisku myszki wybieramy form new part.

Dla chętnych

15. Stwórz kolejny ${\bf Box}$

_	\mathbf{Pocz} ątek	Diagonale
X	$0~{ m cm}$	$200~{ m cm}$
Υ	$0~{ m cm}$	$35~{ m cm}$
Ζ	-20 cm	$35~{ m cm}$

Warto ustawić Operation - Add frozen

Generate

W momencie tworzenia złożenia (punkt 14), nie dodawaj tej bryły do złożenia. Po punkcie 14 powinny być 1 złożenie (part) i jedna bryła (Solid).

16. Wychodzimy z DesignModeler

Siatka obliczeniowa

1. Otwieramy moduł \mathbf{Mesh} .

Figure 6: Rys.6. Nazwy warunków brzegowych

2. Na wstępie nadajmy nazwy warunków brzegowych (Patrz rysunek). W analizie trójwymiarowej naszymi warunkami brzegowymi są powierzchnie. Metoda zaznaczania powierzchni jest taka sama jak w systemie zaznaczania w DesignModelerze. Po zaznaczeniu powierzchni wcisnamy n na klawiaturze i wypełniamy nazwę warunku brzegowego.

UWAGA zauważ, że design modeler podzielił naszą powierzchnie śmigła na dwie części. W górnej belce w zakładce **Display** możemy wyświetlić kierunek linii opcją **Direction** w polu **Edge**. Dzięki temu możesz się upewnić czy obydwie powierzchnie są tak samo zorientowane (Zasada prawej dłoni). Orientacja naszej powierzchni śmigła jest ważna w obliczeniach.

- Jeżeli obie powierzchnie są tak samo zorientowane zaznaczmy je razem i nazywamy razem.
- Jeżeli orientacje powierzchni różnią się od siebie. Nazwijmy je dodając cyfrę fan_1, fan_2.
- 3. Przejdźmy do ustawień siatki.
- 4. W drzewie historii, w menu **Mesh**:
 - Zakładka **Defaults** Upewaniamy się, że **Physics Preference** jest ustawione na **CFD**.

- Zakładka Sizing:
 - Włączamy opcje **Capture Curvature** (powierzchnia wirnika jest okrągła)
- 5. Wygeneruj siatkę. Sprawdź czy geometria skrzydła jest odwzorowana.
- 6. Zaznacz powierzchnię skrzydła oraz powierzchnię wirnika. Utwórz dla nich element **Sizing**:
 - Type: Element size
 - $\bullet\,$ Element size: $10\,$ mm (Dla osób ze słabszym sprzętem 20mm)
 - $\bullet \ {\rm Behavior:} \ {\bf Hard}$

Generate

- 7. Utwórz kolejny element typu Sizing:
 - Scope/Geometry zaznacz bryłę reprezentującą powietrze. Upewnij się, że zaznaczasz objętość a nie powierzchnię
 - Type: Sphere of Influence
 - Sphere Radious: **500 mm**
 - $\bullet\,$ Element size: $30\,$ mm (Dla osób ze słabszym sprzętem 50mm)

Generate

Przyjrzyj się siatce. Co się zmieniło?

Dla chętnych ciąg dalszy

- 8. Utwórz kolejny element typu Sizing:
 - Scope/Geometry zaznacz bryłę reprezentującą powietrze. Upewnij się, że zaznaczasz objętość a nie powierzchnię
 - Type: Body of influence
 - Bodies of Influence: Zaznaczamy stworzoną dodatkową objętość w punkcie 13
 - $\bullet\,$ Element size: $30\,$ mm

Generate

Znów przeanalizuj zmianę, zastanów się po co stworzyliśmy dodatkow«

9. Wychodzimy z programu Mesh

Obliczenia w programie Fluent

- 1. Otwieramy program fluent
- 2. Wstępne ustawienia solvera:
 - Dimension: 3d
 - Display Mesh After Reading
- 3. Ustawienia warunków analizy:
 - General:
 - Type: **Pressure-Based**
 - Time: ${\bf Steady}$
 - Models
 - Model turbulencji: **Spalart-Allmaras**
 - Materials
 - Powietrze z standardowymi ustawieniami
 - Cell zone conditions
 - Upewnij się, że materiałem w domenie jest powietrze
 - Boundary conditions (kliknij dwukrotnie na menu lub w belce górnej w zakładce **Physics**, wejdź w **Boundaries** z polu **Zones**)
 - Inlet 10 m/s, intensywność turbulencji 2%, skala turbulencji 0.5 cm.
 - Symmetry sprawdź czy został załozony odpowiedni warunek
 - Wing upewnij się, że dla skrzydła ustowiony został warunek ściany Przy ustawieniu warunku brzegowego na wall zauważ, że fluent stworzy drugą powierzchnię. Zastanów się dlaczego.
 - fan
 - * Sprawdź w jaki kierunek ma normalna na powierzchni wirnika (Składowa X wektora), jeżeli normalna jest w złym kierunku zmień ją zaznaczając opcję **Reverse Fan Direction**.

Figure 7: Rys.7. Jedna z wizualizacji przepływu

- * W menu rozwijanym **Pressure Jump (jednostka)** wybierz constant
- * W tym momencie przeprowadzimy obliczenia bez śmigła wpisujemy ${\bf 0.0}$
- $\mathbf{Outflow}$ domyślne ustawienia
- 4. Ustawienia solvera:
 - Methods:
 - Schemat: Coupled
 - Monitors/Residual
 - Domyślne wartości zbieżności
- Zainicjalizuj standardową metodą inicjalizacji Jako punkt odniesienia wybierz wlot.
- 6. Prowadź obliczenia aż do osiągnięcia oczekiwanej zbieżności. (W zakładce Run Calculation zmień tylko **Number of Iterations** w polu **Parameters**)

Ze względu na obliczenia trójwymiarowe, czas obliczeń będzie zauważalnie

7. Stwórz wizualizacje przepływu Twojej analizy. Zastanów się jakie wizualizacje najwięcej powiedzą o stworzonej analizie. Zaprezentuj je.

Figure 8: Rys.8. Opcje zapisu

- 8. Wyjdź z programu fluent. Przy wychodzeniu z programu zaznacz drugą odpowiedź. Pozwoli to na zachowanie wszystkich ustawień postrocesingu (wizualizacji i obróbki danych).
- 9. Zduplikuj system obliczeniowy.
- 10. ""Włącz śmigło" W warunku brzegowym fan wpisz wartość 200 Pa (patrz punkt 3).
- 11. Zainicjalizuj przypadek i prowadź obliczenia aż do osiągnięcia oczekiwanej zbieżności.
- 12. Powtórz wizualizacje i porównaj z wynikami bez śmigła.