@ S. Gepner

HPC : LABS

Creative Commons License:
Attribution Share Alike @

LAB 6

Lab VI

Today we will practice concurrent programing by rewriting our serial code to one
parallelized with MPI. The problem to be solved is the simple, linear advection with
periodic boundary conditions. We will limit our attempts to the explicit version of
the solver, but mind that implicit can be parallelized as well.

Domain decomposition

The usuall approach to parallelization for problems that “solve something” over a
certain domain is to split this domain amongst processors. The assumption is that
computational work is proportional to the number of unknows distributed over this
domain. Those are usually associated with the computational mesh. Consequently
the first step involves partitioning the mesh. Such partitioning should fulfill two main
cryteria: * equally distribute the workload, * minimize resulting communications.
Our mesh is rather simple, so partitioning will not be a problem.

Start

Start by adding the MPI_Init(); and MPI_Finalize(); to the begining and the
end of your code. It is good to check if all components work and compile.

Partition your problem

Knowing the size of the problem and the number of processors, as well as the
rank of the current process determine the local problem size and allocate memory
accordingly. Then initiallize the problem, each processor works with its own chunk
of data.

Parallel output

Redesign the dump_solution function so it can be used in parallel. You can use
MPI_Send and MPI_Recv to synchronize the output.

Print current solution u and the rank so we can verify if all is OK using our favorite
plotting program.

The explicit step

We need to modify one of the functions performing the explicit solution step. Since
our problem is periodic and our partitioning “continous” the first process will need to
communicate with the last and each process with the next one. This brings about a
problem. We can either initialize the comunication such that the first communicates
with the second, the second recives the message and than sends one to the next and
so on. This does not seem like a good idea since processes will have to synchronize
and than would wait for other processes to finish. To couter that we will apply the
non-blocking communication. In the nonblocking communication the send/recive
operations do not lock control, but mearly indicate that the buffer should be send
to or recived from with the control imedietly returning to the caller. The price is
the fact, that before clearing out the buffer or reading the data we will need to
check if the comunication operation has completed. This is done with MPI_Wait,
MPI_Status and MPI_Request.

We will discuss positioning the calls while coding this out.
Debugging
So the code is ready and compiles without errors. But is it working as expected? In

general debuging a prallel code brings on a new dimension of problems as there is a
number of new things that could be going wrong.

1 Wydziat Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska 2



