
Lab 4

Lab IV

Today we will get familiar with some concepts concerning concurent processing. We
will try to solve the problems as we proceed with the material.

We will start with some simple examples of starting and managing threads using
standard C++ tolls. We will try to show some common problems and solutions
whan dealing with concurent processing.

Threads

To compile programs using std::thread use g++ thread1.cpp -pthread

Starting and joining

The easiest way to manage threads is to add to your source #include <thread>

and make do wiht std::thread objects. New threads asre started by creating new
std::thread instances, and passing a collable (one that has () and can be called)
object to be executed in the new thread. Once the thread is started it executes, until
it �nishes. The �rst problem to look at is not to leave alive threads for control to go
out of scope (i.e. to go out of the {} region), since this will cause running threads to
trtminate and is in general an unde�ned behavior. To prevent this, threads should
be joined with .join() (C++20 introduces a jthread that supports auto-joining).

See thread1.cpp, compile and run it, examine the commented out synchronization
section.

Detaching

Threads started within a scope live only within this scope, and will be terminated
when it �nishes. This might be a problem for sytuations one wishes to use some

1

form of thread caller functions. To prevent the thread execution from being abruptly
terminated we can use detach, which detaches execution from the thread object.
Note: Should be used with care.

See thread2.cpp

Race condition

Examine thread3.cpp, compile and run. What is the result of the program? Is it
the same every time? Is this a problem? At least the program works, right?

Experiment with the atomic template. Is it any better now?
Modify incrementation of the thread_counter, is there any di�erence in using
thread_counter = thread_counter + 1 or thread_counter += 1?

Mutex and the critical section

Threads working concurrently use the same memory space, and as we have seen
the consequent race condition is a problem. The region of the code our threads
might interfere is the citical section, one that needs to be appropriatly protected.
We will use the mutex (Mutually Exclusive Lock) mechanism. See thred4.cpp for
an example. Compile and run the code. Than, modify thread3.cpp to use mutex

instead of atomic.

TBB

Thread Building Blocks is a library designed to make parallelization of the already
existing, or new code (relativly easy). The objective of TBB is to provide a template
library, very much like STL for managing creation of and working with threads.

Serial implementation

Examine serial.cpp, compile and run it. It is a very simple program that puts data
in to an array and terminates. Nothing fancy.
Extend the code, so an average value is evaluated at the end.

2

S. Gepner HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska



prallel_for

The for loop used to initialize the vector content is a great example of an embar-
rassingly parallel problem. There should be no data race, and no problem with
concurent manipulation, and it should parallelize very eaisly. For this task, TBB
ofers a simple parallel_for, which with little modi�cation to the code manages
starting, stoping and executing working threads.

tbb::parallel_for(range, kernel);

For range we will use tbb::blocked_range<T>(T n0, T n1), which is a template
class describing a one-dimensional iteration space from n0 to n1−1. For our problem
it is the same as the the range of the for (0,y.size()).
kernel is a collable object that takes tbb::blocked_range<T> r as an argument
and processes the chunk of the problem de�ned by r. In our problem we will use
lambda expression [&](tbb::blocked_range<int> r){}.

Note: Our problem is very simple, but a rule of thumb is to put frequently accessed
values into local variables of the kernel. This should help compiler to optimize the
loop better. It seems local variables are easier for the compiler to track.

Examine the execution times and prepere a speedup plot using tbb_parallel_for.cpp.
Than move the de�nition of double x out of the body of the lambda expresion
(Note, this causes the race condition!) and examine resulting speedup, is there any
di�erence?

False Sharing

is a performance degrading event that results from threads sharing resorurces that
lie to close to each other.

When a system participant attempts to periodically access data that is
not being altered by another party, but that data shares a cache block
with data that is being altered, the caching protocol may force the �rst
participant to reload the whole cache block despite a lack of logical ne-
cessity.

Examine, compile and run tbb_false_sharing.cpp example.

3

parallel_reduce

The loop initializing the data was easy to parallelize with parallel_for. How
about summation over all elements? In this operation elements of an array are
reduced into a single result - the sum. TBB o�ers a parallel_reduce function
template to perform reduction operations over the range. The simplest syntax is
parallel_reduce(range, identity_value, func, reduction), where: * range

de�nes a a range, to which sub-ranges func will be applied. * identity_value is
identity for the operation performed by func (0 for summation and 1 for multipli-
cation). * func is a collable object. Could be a lambda expression. * reduction

de�nes how sub-range reductions are joined to produce the �nal result. This can
also be de�ned as a lambda expression, or we could use standard function objects.

More complex problem

Solve linear advection problem ∂u
∂t +c∂u∂x = 0, with periodic boundary conditions and

an appropariate initial condition. Use advection_serial.cpp as a starting point,
here �rst order forward �nite di�erence and an explicit time integration is used.
Examine possible speedup due to parallelization. Then consider implementation of
the implicit method.

4

S. Gepner HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska


