
Lab 3

Lab III

Warmup � vector reduction

Create an array of random �oating point values. The length of the array should be
the benchmark parameter. Compute their sum in the following ways:

1. Use makeRandomVector to create the array (in this case, wrapped in a
std::vector). Implement the reduction naively, i.e., use a single accumulator
and loop over the vector.

2. Use makeRandomVector to create the array (in this case, wrapped in a
std::vector). Use a vector register-sized accumulator and compute the
reduction in a vectorized fashion. To this end, use the compiler intrinsics
appropriate for your CPU. At the end of the loop, manually sum the entries of
the accumulator (store them to memory and do a �nal small loop). Since the
underlying array is only guaranteed to be aligned to the size of the �oating
point value, be sure to use unaligned load/store instrinsics!

3. Repeat 2, this time using aligned storage and memory access. Use the provided
convenience function makeRandomAlignedArray to ensure alignment (align to
64B to further optimize cache behavior).

4. Compute the reduction using an aligned array and the standard algorithm
std::reduce.

Compare and discuss your results.

Vectorizing matrix-matrix multiplication

Vectorize the Goto algorithm code written during the previous class. Assume that
the underlying arrays are properly aligned (you can check this in the initialization
code). Note that only the micro-kernel needs to be modi�ed. Be sure to use the
fused multiply-add operations. Discuss your observations with other students. Ask
the instructors for help, if needed.

1

Introduction to Eigen

Installation

Installation of Eigen is actually not required, as it is a header-only library. Simply
download the source code from Gitlab and include the requisite headers. If you're
using spack, spack install eigen will do the trick (just remember to use the cor-
responding load command). The functionality discussed herein is contained within
the Eigen/Dense header. Be sure to have the quick reference page open.

Eigen::Matrix

Matrix is the foundation of Eigen. It is a template used to represent matrices. The
type of the values stored in the matrix, as well as its size are given by the template
parameters. For example, Eigen::Matrix<double, 4, 6> is a type representing a
4x6 matrix of values of type double. If the size of the matrix is unknown at compile
time, the special value Eigen::Dynamic can be used. The matrix manages its own
storage, meaning that no manual memory management is required from the user.
Some convenience typedefs are provided by the library, for example:

� Eigen::Matrix3d <=> Eigen::Matrix<double, 3, 3>

� Eigen::MatrixXd <=> Eigen::Matrix<double, Eigen::Dynamic,

Eigen::Dynamic>

� Eigen::VectorXd <=> Eigen::Matrix<double, Eigen::Dynamic, 1>

The matrix entries are uninitialized by default. You can access them using
operator(), leading to Matlab-like code. Note that Eigen uses 0-based indexing.
For example:

Eigen::Matrix3d mat;

mat(0, 0) = 3.14;

mat(1, 1) = 1.;

mat(2, 2) = 42.;

std::cout << mat; // note the support for iostreams

// diagonal initialized, off-diagonal entries contain garbage from memory

Initialization to some common cases can be done as follows

2

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska



using namespace Eigen;

MatrixXd m1 = MatrixXd::Zeros(10, 12); // dynamic size => dimensions needed

Matrix3d m2 = Matrix3d::Ones(); // static size => dimensions inferred

Vector4d v1 = Vector4d::Random();

Alternatively, you can use the setX methods:

m1.setZero();

m2.setOnes();

m3.setRandom();

Eigen arithmetic

Arithmetic in Eigen is de�ned in terms of the usual operators: +, -, *, etc. The
only catch is that operators don't return matrices, but proxy objects, which can be
converted into matrices using the appropriate constructor or assignment operator.
What this means in practice is that we can't use auto when creating new matrices:

auto mat3 = mat1 * mat2; // the deduced type is not a matrix, but a proxy type

// Instead do

Matrix<...> mat3 = mat1 * mat2;

The reason for this behavior is that it allows optimization on chain expressions, e.g.

mat4 = mat1 * mat2 + mat3;

would normally �rst evaluate the product of mat1 and mat2, and then sum the
temporary result with mat3. Instead, some optimizations can be performed, e.g.,
writing the result of the temporary product to mat4 and then doing the sum in-
place. This does not meaningfully impact usage (other than not being able to use
auto), but it is worth knowing about.

Transpositions are done as follows

c = a.transpose() * b;

d.transposeInPlace();

3

Algebraic solvers

The �nal feature of Eigen that we will mention is solving systems of algebraic equa-
tions. In Matlab, this is simply done using the \ operator, which selects an algorithm
based on some heuristic. In Eigen, we need to explicitly specify which solver we'd
like to call. The full list is available here. The syntax is as follows

// Solve random 5x5 system of equations

constexpr int n = 5;

Matrix<double, n, n> A;

Matrix<double, n, 1> b;

A.setRandom();

b.setRandom();

// Householder rank-revealing QR decomposition of a matrix with column-pivoting.

vec_t x = A.colPivHouseholderQr().solve(b);

std::cout << "A:\n" << A;

std::cout << "b:\n" << b;

std::cout << "Ax = b => x:\n" << x;

Notes

� Eigen is highly optimized for multiple architectures. The code is vectorized.
Feel free to con�rm this by comparing its performance with that of your own
code.

� Eigen is multi-threaded by default, assuming you link your executable
with OpenMP (by passing -fopenmp to the compiler). To disable this
(e.g. for the purpose of comparison with non-multi-threaded code), de�ne the
EIGEN_DONT_PARALLELIZE macro before including the library headers (or just
don't link with OpenMP).

� Eigen has many interesting features that were not covered here. Examples
include eigensolvers and sparse matrix support. Feel free to explore these,
especially for the purposes of your projects.

� Eigen is open-source and developed by volunteers. Consider contributing!

4

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska



Problems for self-study

1. Compare the performance of your matrix-matrix product with that of Eigen

2. Implement the power method

3. Consider how you can use Eigen in your project

5

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska


