
Lab 1

Lab I

Introduction

The aim of today's class is to get acquainted with the Google benchmark library.
The purpose of this library is to provide various facilities for microbenchmarking.
Benchmarking is a term used to describe the measurement of execution time, the
pre�x �micro� indicates that these measurements should remain reliable even for
very short execution times (which is not trivial!). Parameters other than execution
time can further be quanti�ed.

Is a dedicated library really necessary? Isn't time su�cient?

To demonstrate that a dedicated benchmarking library is, in fact, needed, let us try
the naive approach. We will attempt to measure the time needed to compute the
sine of 100 double precision �oating point values. Paste the following into src.cpp:

#include "MakeRandomVector.hpp"

#include <cmath>

#include <cstdint>

using std::ptrdiff_t;

int main()

{

const auto random_vector = makeRandomVector(100, -3.14, 3.14); // 100 random values from [-3.14, 3.14]

auto results = random_vector;

for(ptrdiff_t i = 0; double x : random_vector)

results[i++] = sin(x);

}

To compile from the command line:

1

First, download MakeRandomVector.hpp

wget https://gist.githubusercontent.com/kubagalecki/8b89de1850cf701441e031b878ae1552/raw/a07d4847e5746b94fcc5653ca1bfaa865fb59e90/MakeRandomVector.hpp

Now compile the code

g++ -std=c++20 src.cpp

Let us now measure the execution time:

time ./a.out

We can see that our code took several milliseconds to execute. However, a couple
issues arise:

� If we perform a few more measurements, we will see that we get slightly dif-
ferent results each time. Which result is correct?

� We would like to measure only the time of the calculation. However, we have
measured the execution time of the entire program. This includes the startup
time, vector allocation, etc. Is this result even close to correct?

The latter problem could be solved by comparing clock values before and after the
execution of the for loop (which is also an imperfect solution, since reading the
clock takes a non-zero amount of time). However, to solve the former, we need to
generate a set of measurements and perform some statistical analysis thereon. But
how big should this set be? Should its size be a constant, or depend on the measured
time? How should outliers be treated? As we can see, microbenchmarking is far from
trivial. It's best to rely on solutions provided by people who have put considerable
thought and e�ort into this topic.

Library installation

Below, we propose 2 ways of installing Google benchmark

� Manual installation. This requires root privileges (sudo) and installs the li-
brary globally on the system.

� Installation using the Spack package manager. This does not require root
privileges and is generally simpler.

2

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

Manual installation

Manual installation is described in the repository readme. The only prerequisites
are a working C++ compiler and CMake 3.5 or newer. Note that if you install the
library in a custom directory, you'll later need to tell CMake how to �nd it. This
can be done by setting the benchmark_DIR CMake variable at con�gure time. Your
con�gure command will therefor have to look like this:

cmake -Dbenchmark_DIR="your/path/to/benchmark/installation" [other options] ..

Installation using Spack

Spack is a package manager, which allows for easy installation and management of
various libraries and tools. It's distinct in that it builds all required binaries, as
opposed to downloading them from the relevant vendors. We will give a more in-
depth explanation and guide later on in this course. For the time being, we only
present a step-by-step instruction on how to install the library under discussion.
Spack's documentation is available here. We do the following:

git clone -c feature.manyFiles=true https://github.com/spack/spack.git

spack/bin/spack external find # find available system packages, this will speed up the installation process

spack compiler find # find available compilers

spack/bin/spack install benchmark ~performance_counters

Spack will recursively build and install all required tools and libraries. We only
need to remember to call the following command each time we set up our build
environment.

spack/bin/spack load benchmark

To load Spack's shell support, you can source the relevant script:

. /path/to/spack/share/spack/setup-env.sh

This will let you invoke Spack without specifying the full path. You can add this
line to your .bashrc �le to avoid having to retype it every time you open a new
shell.

3

Project con�guration

To demonstrate how to use Google benchmark, we will �rst need to create a basic
C++ project. We're going to require the following:

� Header �les (in our case MakeRandomVector.hpp)
� Source �les (in our case a single source �le named BenchmarkDemo.cpp, though
you may choose a di�erent name)

� A CMakeLists.txt �le, which contains the �recipe� for how to build our project

We will assume the following directory structure:

project_dir/

|

|__src/

| |__BenchmarkDemo.cpp

|

|__include/

| |__MakeRandomVector.hpp

|

|__CMakeLists.txt

The CMakeLists.txt �le should contain the following:

cmake_minimum_required(VERSION 3.5)

project(my_project_name) # this does not matter for our simple case

add_executable(bench_demo src/BenchmarkDemo.cpp) # this determines the executable name

target_include_directories(bench_demo PUBLIC include)

target_compile_features(bench_demo PUBLIC cxx_std_20) # we need C++20

find_package(benchmark REQUIRED)

target_link_libraries(bench_demo PUBLIC benchmark::benchmark)

To make sure we did everything correctly, let us test out the following code in
BenchmarkDemo.cpp:

#include "benchmark/benchmark.h"

#include "MakeRandomVector.hpp"

BENCHMARK_MAIN();

4

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

To build and run our binary, we execute the following

starting directory is project_dir

mkdir build

cd build

cmake ..

make

./bench_demo

The following text should be printed to the screen:

Failed to match any benchmarks against regex: .

The failure is expected, as we have not de�ned any benchmarks just yet.

A brief explanation of what just happened

If you are even vaguely familiar with C++ development on Linux, you likely under-
stand what we just did. If this is the case, feel free to skip ahead to the next section.
For those who may be a little lost, we provide the following explanation. While not
a prerequisite for the completion of this lab assignment, it's probably best to have at
least a high-level understanding of the build process, especially since you'll need to
build your own projects by the end of the semester. If after reading the explanation
you still feel like you don't understand much, please ask the instructor for help.

Building a C++ binary is a multi-step process. An in-depth review can be found,
e.g., here (though for our purposes, this level of detail is not needed). The two most
important steps are:

� compilation of translation units (i.e. .cpp �les) into object �les
� linking of the compiled object �les (and possibly outside libraries, as is the
case here) into a binary

These require invoking the compiler and linker multiple times with various �ags and
arguments. Instead of doing this manually, the �recipe� for a binary is gathered into
a Makefile, which can then be used as an input to the build tool make (this is done
in the penultimate line of the build script above). However, the Makefile is still
fairly low-level and writing one takes quite a bit of e�ort. Furthermore, it is strictly
a Unix creation, so if we wish to build our project on Windows, we need a di�erent

5

solution. CMake was created to solve these problems. It has become the de facto

standard, so, while other solutions exist, it is best to learn how to use it. CMake
is not a build system, but a build system generator. In other words, it allows us to
represent our project in a high-level and human-readable way, and then generates
the Makefile (or its equivalent on other platforms) for us! It can also do other
things, such as detect our compiler, �nd libraries, package software, and much more.
CMake uses the concept of a �target� to describe a logical piece of a project. These
can include executables, libraries (not necessarily buildable ones, e.g., header-only
libraries can be targets too) and more. Targets can have properties, and we can
model dependencies between di�erent targets.

In our case, we have 2 targets:

� The executable bench_demo, which is de�ned by add_executable(bench_demo
src/BenchmarkDemo.cpp). Had our binary consisted of multiple .cpp �les, we
would have provided them all here, separated by spaces.

� The target benchmark::benchmark, which represents the Google benchmark
library. This target is created by the call to find_package(benchmark). As
we can see, libraries packaged with CMake can be easily used by projects also
using CMake.

Let us now go over the CMake �le step-by-step.

1. cmake_minimum_required(VERSION 3.5) sets the required version of CMake.
This is done to produce a clear error when attempting to use an older version.

2. project(my_project_name) simply names our project.
3. add_executable(bench_demo src/BenchmarkDemo.cpp) de�nes our exe-

cutable target.
4. target_include_directories(bench_demo PUBLIC include) speci�es the

include directories for source �les from the bench_demo target. Thanks to
this line, we can call #include "MakeRandomVector.hpp" without specifying
the full path. The modi�er PUBLIC speci�es that this property is inherited by
all targets which depend on bench_demo. The other two options are PRIVATE
- a�ects only the speci�ed target and INTERFACE - a�ects only the targets
which depend on bench_demo. This choice does not matter for our simple
example (it becomes important for more complex projects).

5. target_compile_features(bench_demo PUBLIC cxx_std_20) speci�es that
we require C++20. This will result in the appropriate compiler �ags being
set.

6

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

6. find_package(benchmark REQUIRED) �nds the Google benchmark library.
REQUIRED speci�es that CMake should produce an error if it can't �nd the
requested package.

7. target_link_libraries(bench_demo PUBLIC benchmark::benchmark)

speci�es that our target bench_demo should be linked against the Google
benchmark library. This utility can also be used more broadly to express
dependencies between targets.

Now let's go over the build script

1. First we create the directory where we'll be building our binary (CMake pro-
duces quite a bit of �les, so it's best to do this is a separate directory) and cd

into it.
2. We invoke CMake with the argument .., i.e., the project directory. This tells

CMake to look for a CMakeLists.txt �le in the speci�ed directory. Since one
is found, CMake then automatically detects our compiler and environment,
con�gures our project, and creates the Makefile.

3. We invoke make, based on the �le generated by CMake. This builds our ex-
ecutable. Note that we do not need to know anything about the syntax or
structure of the generated Makefile.

4. We run the produced executable.

A note on using CMake: When looking for resources online, you may encounter
the old style of writing CMake �les, which uses lots and lots of variables to set
global properties (e.g. set(CMAKE_CXX_FLAGS "-std=c++20")). This is very much
not recommended. Please use targets, set their properties individually, and express
the relationships between them using target_link_libraries. If you need to set
global properties, do it from the command line, for example

cmake -DCMAKE_CXX_FLAGS="-std=c++20" ..

Learning Google benchmark

Let us now move on to the main part of this class. The general structure of a
benchmark is as follows:

void my_benchmark(benchmark::State& state) // 1. Function defining the benchmark

{

7

// 2. Setup code

const auto input = makeInput();

for(auto _ : state) // 3. Benchmark loop

{

// 4. Code to be benchmarked

const auto output = functionToBenchmark(input);

}

// 5. Tear-down code

cleanup();

}

BENCHMARK(my_benchmark) /* <- 6. register benchmark; 7. options -> */ -> option1(args...) -> option2(args...);

1. Our benchmarks are de�ned as functions of type void(benchmark::State&).
The state object is used to interact with the library. The interaction works
both ways - we can use this object to, e.g., query some parameters, and the
library can use this object to determine whether to keep running the main
loop.

2. This is the setup code for our benchmark. Its execution time does not get
measured. In the example from the beginning of this class, this is where we
would create the vectors of values.

3. This is the main benchmark loop. It is run until the library has collected
enough data to be statistically signi�cant. Note that _ is just a name for an
unused variable, it's not some special syntax.

4. This is the code which gets benchmarked.
5. In the tear-down code. Here we can perform any required �nal tasks, e.g. deal-

locate memory.
6. The BENCHMARK macro registers our function as a benchmark (without it, the

library cannot magically ascertain that the function we wrote should be run).
7. We can pass some additional options using the -> operator. We will discuss

some commonly used options later, the full list can be found in the documen-
tation.

The last piece needed to perform the measurements is a main function. If we don't
wish to do anything special (and in this class we do not), we can just use the
BENCHMARK_MAIN() macro as shown in the previous section. This will run all regis-
tered benchmarks and print the results to the screen as they are computed.

8

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

How long does it take to do nothing?

The �rst operation we will be benchmarking is. . . doing nothing. Such an operation
is commonly known as a noop (pronounced �no-op�). To do this, we can simply
run the empty benchmark structure above (just make sure to delete the meaningless
options). After building and running we should get an output similar to that below

2021-12-23T15:38:01+01:00

Running ./bench_demo

Run on (16 X 5100 MHz CPU s)

CPU Caches:

L1 Data 32 KiB (x8)

L1 Instruction 32 KiB (x8)

L2 Unified 256 KiB (x8)

L3 Unified 16384 KiB (x1)

Load Average: 0.63, 0.35, 0.22

WARNING CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.

Benchmark Time CPU Iterations

bench_noop 1.08 ns 1.08 ns 607058268

We can see that some information regarding our CPU is printed. Below, we have
a table containing the data for our benchmark. The information in the columns
describes:

1. The name of the benchmark
2. The time it took the benchmark to execute
3. The time the CPU was busy
4. The size of the measurement set (number of loop iterations). This will increase

as the time of a single iteration decreases.

To demonstrate the di�erence between the �Time� and �CPU� columns, we will now
benchmark waiting for a short period of time. To suspend the current thread of
execution, we will use STL facilities from the chrono and thread headers:

using namespace std::chrono_literals;

std::this_thread::sleep_for(1s); // waits 1 second

9

Benchmarking the code above reveals that the execution time was roughly 1 second,
however the CPU was busy for much less. To present the measurement in a more
readable fashion, we can change the units as follows:

BENCHMARK(bench_wait)->Unit(benchmark::kSecond);

We can also name our benchmark:

BENCHMARK(bench_wait)->Unit(benchmark::kSecond)->Name("Wait 1 second"); // order of options doesn't matter

Some useful features

Let us now take a step towards solving the problem posed in the introduction. Before
we compute the sine of a vector of values, we will start with just one.

Sine of a value We are now ready to write a benchmark which measures how
much time it takes to compute the sine of an arbitrarily chosen value. Please do so
on your own and note the result. Calculate the number of cycles it took to compute
the sine (multiply the time by the clock frequency).

If we paid attention during the lecture, we will notice that one piece of the puzzle
is missing. Namely, we are not enabling compiler optimization. To do this, we need
to recon�gure our CMake project. We could manually set the compiler optimization
�ags, however this is not recommended. Since building a project in Debug (no or
minimal optimization) and Release (full optimization) modes is ubiquitous, CMake
provides a simple way of doing this - setting the CMAKE_BUILD_TYPE variable. We
can leave our CMakeLists.txt �le unchanged and simply call

cmake -DCMAKE_BUILD_TYPE=Release ..

After that we proceed as usual. If we rerun our benchmarks, we will see the following
results:

--

Benchmark Time CPU Iterations

--

noop 0.000 ns 0.000 ns 1000000000

Wait 1 second 1.00 s 0.000 s 10

Sine of a value 0.000 ns 0.000 ns 1000000000

10

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

The �rst result is good news - under an optimized build, doing nothing takes no
time at all. The second benchmark should also not be a surprise - we asked to wait
1 second, and optimization should not a�ect the correctness of our code. However,
the last result should give us pause. Is the CPU a trigonometric oracle, which knows
the sine of all values without performing any operations at all? Of course not.
What happened is simple - since the computed value is not used anywhere else in
our program, it was optimized away by the compiler. We are therefore e�ectively
benchmarking a noop - with the expected results. We therefore seem to be facing an
impossible dilemma - either we compile under debug and get unrealistic results (since
any real world computations will have optimization enabled), or we get no result at
all. Fortunately, this is a common problem, for which the Google benchmark library
provides a solution. We can use the DoNotOptimize function to prevent the compiler
from optimizing away the result:

for (auto _ : state)

{

double y = sin(x);

benchmark::DoNotOptimize(y);

}

A benchmark written this way should give us a meaningful result. Before you run
it, take an educated guess as to how many cycles it takes to compute a sine. Now
run the benchmark and see if your reasoning was correct!

Sine of a vector of values We can now proceed to the problem posed in the
introduction - computing the sine of a vector of values. Knowing the number of
cycles it took to compute a single sine, take a guess as to how long it will take to
process the whole 100-element vector. Now please write the relevant benchmark and
take look at the results. Were you close?

Note on optimization: As of the writing of this text, gcc is not smart enough to
optimize away the computation performed in this exercise, so DoNotOptimize isn't
needed. However, if your compiler is able to do this (or you just want to be extra
careful), please add the following code to the end of you benchmark loop:

benchmark::DoNotOptimize(y.data()); // y is the result vector

benchmark::ClobberMemory();

The �rst line will prevent optimizing away the result (y.data() is the address of

11

the vector's underlying allocation) and ClobberMemory will prevent any clever tricks
involving writing to memory.

Passing arguments to benchmarks It is often the case that we are tuning a
piece of software and wish to establish optimal values for some heuristic parameters.
Such examples were shown during the lecture (tile size, among others). The most
straightforward way to achieve this is by performing an exhaustive search in the ad-
missible parameter space, i.e., try all possible parameter combinations and see which
one yields the best results. It would be quite inconvenient to have to write separate
benchmarks for every parameter combination. Therefore, Google benchmark allows
the user to de�ne a parameter range as an option and query the current value using
the state object. The code looks as follows:

void benchmark_fun(benchmark::State& state)

{

const int param = state.range(0);

// the rest of the benchmark uses the parameter value

}

BENCHMARK(benchmark_fun)->Arg(1)->Arg(2)->Arg(13)->Arg(42) /* -> other options */ ;

This will result in benchmark_fun being run 4 times, once for each of the arguments
1, 2, 13, and 42. If we wish to search a sparse parameter space, we can use the
convenient shorthand of

BENCHMARK(benchmark_fun)->Range(1, 4096) /* -> other options */ ;

This will run the benchmark on the geometric sequence 1, 8, 64, 512, 4096. More
generally, ->Range(min, max) will choose some suitable parameters between min

and max, each of them being 8 times greater than the previous one. This multiplier
can be adjusted with the RangeMultiplier option. For example,

BENCHMARK(benchmark_fun)->RangeMultiplier(2)->Range(1, 4096);

will run the benchmark for each power of 2 between 1 and 4096. Google benchmark
provides some more ways of passing arguments (including all possible combinations
of multiple parameter sets), but the simple ones shown above should be su�cient
for this course. If you are curious, you can always refer to the documentation.

Let us now practice passing arguments. Write a benchmark which computes the
sine of a vector of values. The length of this vector should be a parameter of this
benchmark. Measure the results for the lengths 256, 1024, 4096, 16,384, and 65,536.

12

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

Throughput-oriented benchmarks In the last example, reviewing the results
may have been a little inconvenient. Di�erent values of the passed parameter imply
di�erent amounts of work, so we need to divide the time by the problem size before
comparing the results. For more complex examples, this can get quite tricky. For
this reason, Google benchmark provides a way of explicitly printing how much work
was done during execution. During the tear-down phase of the benchmark, we can
call state.SetBytesProcessed(<integral value>) to indicate how much work
was done during benchmarking. We will then get a nice bytes per second value in
the results table. Note that this function expects the amount of work done during all
iterations, not just a single one, so we need to use the iterations member function
of the state object to query how many iterations were run. The code looks something
like this:

void benchmark_fun(benchmark::State& state)

{

const int work_per_iteration = 42;

// main loop

state.SetBytesProcessed(state.iterations() * work_per_iteration);

}

We can further pass the --benchmark_counters_tabular=true option when calling
our executable to get better looking results (the throughput is aligned in a separate
column).

Pausing and resuming the timer The last feature of the Google benchmark
library we will learn about today is controlling the timer from within the main
benchmark loop. It is sometimes necessary to do some setup or tear-down every
iteration, but without counting the time it takes towards the measurement (see
item 1 below for a concrete example). If we encounter such a situation, we can
call state.PauseTiming() and state.ResumeTiming() to create a section of the
loop which does not count towards the measured execution time. However, this
functionality should be used only when absolutely necessary, since it introduces
overhead and may skew the results.

Problems for self-study

1. Sorting. Write a benchmark which measures the time it takes to sort
vector<double>. See how it behaves for di�erent sizes of the vector. Try to
estimate the time complexity of the sorting algorithm and compare it with

13

the theoretical value of O(n*log(n)). Does it take longer to sort a vector of
ints or doubles? Note: You will need to pause the timer at the beginning of
every iteration to generate a new random vector (or to shu�e the old one, or
assign a pre-computed random vector to the one which gets sorted), otherwise
you will be measuring the time it takes to sort a sorted vector (which is a
valid benchmark for a sorting algorithm, just not one that we're interested in
right now).

2. Matrix-matrix multiply. Try for yourself some of the code shown during
the lecture. Con�rm that the parameters (e.g. for the tiling approach) were
chosen correctly. Maybe the optimal values are di�erent for your CPU?

3. Follow your curiosity. Are there any problems that you'd be interested in
benchmarking? Maybe you think you can beat the implementation of some
feature from some library (or the standard library). Maybe you're just curious
why something seemingly simple takes a long time. Take the time to explore
the questions you'd like to answer, and be sure to ask the instructor for help
with interpreting the results, if you need it.

14

J. Gałecki HPC : Labs Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

