
Solution of the set of linear algebraic equations

Files for the present tutorial can be found using following links:

� Header �le gauss.h
� Source �le gauss.cpp

1. Introduction

During this laboratory we will use one of the numerical methods for solution of the
set of linear algebraic equations. The numerical methods for this kind of problems
are extremely important in practically all applications of (continous) mechanics. In
practice, all non-linear problems (also described by partial di�erential equations)
can be transformed using appropriate discretiziation rules and some additional as-
sumptions, to the sets (sometimes huge) of linar equations. These sets are solved in
the procedure allowing to obtain approximate solution of the exact non-linear prob-
lem. Such transformation is usefull as the sets of linear equations are praticularly
well suited for numerical solution by computers which perform e�ciently only simple
operations (e.g., addition, subtruction). Such approximate solutions are very usefull
in engineering practice, very often they are only available solutions of the complex,
non-linear problems.

The exit point is the set of linear equations:

A · x = b

where: A is a matrix of coe�cients, x is vector of unknowns and b is the right hand
side (RHS) vector that is given. We know how to solve above system using the Gauss
method. But before that we will construct the set of the linear equations to solve.

To this goal, we use �nite di�erence method. It is based on discretization of deriva-
tives using the values at di�erent, prde�ned points (grid centers). Such approach
allows to reformulate problem described by continous di�erential equations to the
set of linear algebraic equations. This process is called discretization. Solution of
this problem - meaining �nding values of the vector x - typically requires �nding
inverse of the matrix A and �nding of its left product with vector b:

x = A−1 · b

as A−1A = I where I is identity matrix.

1

Let us note, computation of the inverse matrix A−1 although possible is computa-
tionally expensive. For this reason during this classes we use Gauss elimination

method that is from the class of the direct methods (not iterative) for solution of
the set of linear algebraic equations.

Futher, we divide the work into two parts. First we will discretize continous problem
in order to create the set of linear algebraic equations, next we solve this set using
the aformentioned Gauss method.

2. Creation of the set of linear equations

Let us condier a problem of heat transport by conduction in the one dimensional
steel rod (see Fig.)

We want to �nd a distribution of temperature, knowing that at the beggining of
the rod, temperature is Tp = 273 [K] and at the end of the rod Tk = 300 [K].
Additionally we know: L = 1 [m] the length of the rod, λ = 58 [W/mK] heat
conductivity of steel. Moreover, the steel rod is heated by an additional heat source
varying along its length as Q = −104 · sin(xπ)[Wm3].

Hence, the heat conduction is described by the equation:

∂

dx

(
λ
∂T

dx

)
= Q(x)

Taking into account that λ = const., we can simplify above equation to:

d2T

dx2
=

Q(x)

λ

This is a second-order, ordinary di�erential equation (T depends only on x) for-
mulated as boundary value problem. Hence, to solve above equation we need two
boundary conditions for temperature:

T (x = 0) = Tp

2

W. Gryglas, eng. T.Wacławczyk Computer Science 2 : Instruction 6 Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

T (x = L) = Tk

In order to solve above problem using �nite di�erence method we have to reformulate
it to a set of the linear algebraic equations. To this goal, we have to divide compu-
tational domain (length of the rod L = 1 [m]) into smaller elements. We choose to
divide the interval [0, 1] into N elements, as depicted in Figure below.

The points x0, x1, ..., xN are called the nodes of the computational grid. Let us
assume for now, their distribution is uniform (equidistant), hence, xi+1 − xi = h
where h = L

N is constant, L = 1 [m] in our case:

h =
1

N

Before we discretize equation, let's introduce following notation:

T = [T0, T1, T2, T3, ..., TN]T

where T is a vector storing values of the solution at discrete grid points T = T (xi),
i = 0, ..., N .

Now, let's recall de�nition of the derivative of the function:

dT

dx
= lim

dx→0

T (x+ dx)− T (x)

dx

The computer can not use in�nitisemaly small numbers, for this reason dx in the
computer code must be �nite. To this goal, let us choose h which is small but �nite:

dT

dx
≈ T (x+ h)− T (x)

h

In above equation one problem appears. For which value of x abobove formula
approximates the derivative: x, x+h or maybe x+ h

2 ? In reality above approximation
is true for each of the previousely de�nied points as it is only an approximation.

3

� If we choose that the derivative is approximated at point x: dT
dx (x) above

approximation results in the explicit Euler's scheme (in space).

� If we choose that the derivative is approximated at point x+h: dT
dx (x+h) above

approximation results in implicit Euler's scheme (in space).

For the present classes, we however assume that the di�erence T (x+h)−T (x)
h approx-

imates the value of the derivative at point x+ h/2: dT
dx (x+ h

2) One can show this is
second-order accurate discretization of the derivative. As our heat conduction equa-

tion, uses second-order sparial derivative d2T
dx2 we use above approximation twice.

Let's introduce notation dT
dx = Y . Then our problem can be written in the form:

dY

dx
=

Q(x)

λ

And we use approximation of the derivative of the function Y (central di�erence) to
obtain:

Y (x+ h
2)− Y (x− h

2)

h
=

Q(x)

λ

Let us write terms in above formula explicitely: Y (x+ h
2) =

dT
dx (x+ h

2) oraz Y (x−
h
2) =

dT
dx (x− h

2):

Y (x+
h

2
) =

T (x+ h)− T (x)

h
Y (x− h

2
) =

T (x)− T (x− h)

h

After substitution to the initial heat condution equation, we obtain:

T (x+h)−T (x)
h − T (x)−T (x−h)

h

h
=

T (x+ h)− 2 · T (x) + T (x− h)

h2
=

Q(x)

λ

Above formula, is an approximation of the second-order derivative using the values of
T function in three points: x−h, x, x+h. The central scheme is second-order accurate
what is its desirable feature, we can use above equation to construct corresponding
set of the linear algebraic equations. Let's modify above formula by multiplying
both sides by h2 what leads to:

T (x+ h)− 2T (x) + T (x− h) =
Q(x)

λ
h2

Let go back to the �gure above presenting discretization. We take into account
internal nodes having numbers 1,. . . ,N-1. If we substitute values of following xi to
the equation above following set of the equations is obained:

T2−2·T1+T0 =
Q(x1)

λ
·h2T3−2·T2+T1 =

Q(x2)

λ
·h2T4−2·T3+T2 =

Q(x3)

λ
·h2...TN−2·TN−1+TN−2 =

Q(xN−1)

λ
·h2

4

W. Gryglas, eng. T.Wacławczyk Computer Science 2 : Instruction 6 Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

Above set omits points 0 and N as it is hard to write an equation for them (nodes
x−1 and xN+1 does not exsist) we will take them into account in the moment. Now
let's look on the form of the above equations. Each of them carries information
about 3 unknown values denoted as Ti+1, Ti, Ti−1. These are values of the unknown
function in corresponding nodes. We introduce one more vector F :

Fi =
Q(xi)

λ
· h2

its elements F = F (xi) contain values of the known RHS in the equation. Therefore,
reformulated equation �naly has a form:

Ti+1 − 2 · Ti + Ti−1 = Fi

Using vector notation above equation in matrix form reads:

K · T = F

where K is the matrix of coe�cients:



1 −2 1 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 1 −2 1



×




T0

T1

T2

...
TN



=




F1

F2

...
FN−1




Above set of linear algebraic equation is not closed. As it is easy to notice the
matrix K is not square since two equations for the nodes x0 and xN are missing.
Here, we must use boundary values:

T (x = x0) = T0 = Tp = 273T (x = xN) = TN = Tk = 300

Above equations mean that we know solution (temperature F0 = T0 and FN = TN)
at points x0 and xN . Therefore we can explicitly include them into the set of
algerbraic equations:




1 0 0 0 0
1 −2 1 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . . 0

0 1 −2 1
0 1




×




T0

T1

T2

...
TN−1

TN



=




273
Q(x1)

λ · h2

Q(x2)
λ · h2

...
Q(xN−1)

λ · h2

300




5

Exercises

1. Create a variable: two dimensional array K using static memory allocation.
Set constant size of a matrix N=6 (use an instruction const int N=...; or
preprocessor declaration #define to change the size of a matrix). Remember,
the number of discretization (grid) points equals N + 1 in the above example.

2. Create static arrays to store the RHS vector F and vector of unkowns T/

3. Initialize matrix K according to discretization presented above.

4. Write function displaing matrix K with protoype:

void DisplayMatrix(int n, double A[][N]);

Check if matrix K in your code has elements as described above.

5. Compute the vector of F using de�nition from above description.

3. Solution of the set of linear algebraic equations

Finally, we can solve the set of linear algebraic equations. As a result we obtain
one-dimensional array T storing the values of unknown temperature in prede�ned
grid points.

Exercises

1. Apply function gauss performing the Gauss elimination to solve above sys-
tem of equations. The header of this function: void gauss(int n, double

A[][N], double b[], double x[]) where n number of equations, A the co-
e�cient matrix, b - the right hand side vector and x the vector of unknowns
(stores �nal result).

2. Prepeare diagram of the function T = T (x) using graphical library. If N=20
(meaning 21 points) your result should be similar to the result depicted in the

6

W. Gryglas, eng. T.Wacławczyk Computer Science 2 : Instruction 6 Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

�gure below

0.0 0.2 0.4 0.6 0.8 1.0

27
5

28
5

29
5

30
5

x

T
(x

)

3. Test your program for di�erent n (be carefull, the Gauss method is slow n3

operations are required to obtain the solution).

4. Based on the function gauss write a function computing upper tri-diagonal
matrix. Next, use it to compute determinant of the matrix K.

7

W. Gryglas, eng. T.Wacławczyk Computer Science 2 : Instruction 6 Creative Commons License:
Attribution Share Alike

Wydział Mechaniczny Energetyki i Lotnictwa, Politechnika Warszawska

