
Introduction to HPC
Lecture 7

Jakub Gałecki



Agenda

• Miscellaneous parallelism-related tidbits

• Sharing computational resources with slurm

• Managing the HPC software stack – spack

• Exercise – optimizing a piece of FEM code

1



Parallelism tidbits



Simultaneous multi-threading

One physical core split into multiple (usually 2) logical cores

Logical cores share the resources of the underlying physical
core: cache and execution units

Pros Cons

Energy efficiency Potential resource conflicts

Hides stalls Reliance on OS scheduler

Better execution unit saturation

Let’s once again take a look at a CPU diagram to better
understand how it works...

2

https://en.wikichip.org/w/images/7/7e/skylake_block_diagram.svg


Private and shared cache

3



Parallel patterns

There are 3 classes of data access patterns (algorithms) we
should be aware of:

• map
• reduction
• scan

We should know how to identify them, and take advantage of
their parallelized implementation in whatever parallel library
we’re using.

4



Map

A map is just a for loop over the data. This is the simplest
pattern to parallelize, as there is no inherent dependency
between iterations.

5



Reduction

A reduction combines multiple elements into a single value.
This requires synchronization between regions.

6



Scan

A scan propagates data such that the i-th iteration depends on
the result of iteration i− 1. A good example is computing the
vector of partial sums. This can still be done in parallel!

0 1 2 3 4 5 6 7

0 1 3 6 10 15 21 28

7



Static scheduler

Scheduler

Q1 Q2 Q3

T1 T2 T3

8



Dynamic scheduler

Scheduler

Q1 Q2 Q3

T1 T2 T3

Work stealing

9



Sharing resources with slurm



Background

Computational clusters are big.

In fact, they are so big, that many different people will use
them simultaneously.

Furthermore, due to sub-linear scaling, it is usually more
efficient to run many small jobs (e.g. simulations) than one
large job.

This section will touch on how to efficiently share these
computational resources and how to be a good HPC citizen.

10



Manually launching MPI jobs

Launching MPI jobs directly via mpiexec/mpirun can be
tricky, and it requires that we know something about the
topology of our machine (and that MPI knows it too)

mpiexec -n 4 my_program

mpiexec -n 2 --map-by ppr:1:socket my_program

Ideally, we’d like an abstraction layer which launches and
manages MPI jobs for us, instead of doing it manually

11



slurm

slurm is a popular cluster management and job scheduling
system (which manages the computing resources you’ve been
given access to). We will focus on the job scheduling part.
slurm can help us answer the following questions:

• How big is the cluster?
• What is the current workload?
• Who is currently using the machine?
• What are the currently available resources?

Most importantly, it will allow us to run our code on the
number of nodes that we require, or queue our job for
execution at a later time.

12



Terminology

Job – unit of work, a set of commands to be executed.

Interactive job – a job where we actively log onto a node and
type commands into the terminal in real time.

Batch job – a job where we submit a script for execution
without any further user input.

Partition – A subset of the computational resources (nodes).
Clusters can be partitioned based on the specs of the
particular nodes, e.g. one partition for CPU nodes and one for
GPU nodes.

Allocation – a number of nodes (or cores) assigned to us for
use (possibly for a limited time)

13



Useful commands

sinfo – view cluster info, e.g., number of nodes, partition info

squeue – view executing and scheduled jobs

salloc – request allocation

srun – run parallel job

sbatch – submit script for execution (batch job)

Note: you should call srun from a script submitted via
sbatch to avoid directly invoking MPI

More info: https://slurm.schedmd.com/man_index.html

14

https://slurm.schedmd.com/man_index.html


Example slurm options

--job-name - name your job

--time - set a deadline

--ntasks - set number of MPI ranks (not recommended)

--nodes - request specific number of nodes

--ntasks-per-node, --ntasks-per-socket,
--ntasks-per-core

--exclusive - request exclusive access to nodes

--chdir - specify working directory

--output - redirect output to file

15



Model workflow

1. Copy code/data to scratch space
2. Request allocation/submit batch script
3. Execute the job
4. Copy data from scratch to permanent storage
5. Clean up scratch

Some etiquette:

• Name your jobs reasonably
• Clean up scratch space!
• Give reasonable timeouts
• Use only as much as you need

16



Building libraries & managing
dependencies with spack



C++ library

A library is a distributed piece of software, intended for use via
its API. Libraries can consist of:

• Header files
• Statically/dynamically linked binary files (libraries)
• Build files (e.g. CMake)
• Tests
• Documentation
• License
• ...

They can be open-source (the user can build them from
scratch) or closed-source (pre-compiled binaries, source code
is “secret”). We will focus on open-source projects.

17



Building a library

Usually, we need to perform the following steps:

1. Download the source (git clone or download a tarball)
2. Configure
3. Build
4. Test
5. Install
6. Make discoverable*
7. Use as a dependency for our project

For complex projects, this may not be straightforward...

18



Common installation script

To install the library

git clone [project repo url] && cd repo-name
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
make tests
make install

To use the library, add the following to your CMakeLists.txt file

find_package(lib)
target_link_libraries(my_target lib::lib)

If you’re lucky...

19



The problem with managing software

libiconv@1.16/tp7eglsncurses@6.3/mxnij2e

pkgconf@1.8.0/ketiudp

diffutils@3.8/uoxbhmv

perl@5.36.0/mpjigd3

berkeley-db@18.1.40/rysefqmgdbm@1.23/qgkv2lq bzip2@1.0.8/qo4pfglzlib@1.2.13/tsr4sc2

ca-certificates-mozilla@2022-10-11/lsnuif6

cmake@3.22.1/oljfp7z

libpciaccess@0.16/r6cbuyd

libtool@2.4.7/tcaua4eutil-macros@1.19.3/ko4qiha

xz@5.2.5/2z4gdxy

libevent@2.1.12/zbmadnv

openssl@1.1.1s/vyzv546

pmix@4.1.2/tanpsbg

hwloc@2.8.0/ocqwxsh

libxml2@2.10.1/dwwbya5

openssh@9.1p1/hevbxxj

krb5@1.19.3/ccjnpo7

libedit@3.1-20210216/3g2fzl3

tar@1.34/4riz7bz

m4@1.4.19/gcq7krh

readline@8.1.2/ybnng6z libsigsegv@2.13/23emvmd

automake@1.16.5/peulfla

autoconf@2.69/i2wq4iobison@3.8.2/4gz7lcl

openblas@0.3.21/sn7kbe4openmpi@4.1.4/ntths6g

numactl@2.0.14/uwphnew

gettext@0.21.1/ycerhzh

trilinos@13.4.0/h2irycs

Example dependency DAG

20



The problem with managing software

We need to install every dependency, and also their
dependencies, and their dependencies...

We would like to be able to configure the installation

We would like to be able to install multiple versions of the
same library

We would like to be able to use different compilers

How can we automate this?

21



spack

spack is a package manager, developed with HPC in mind
(though now used more broadly)

No installation required

It builds the world from scratch, meaning it builds the
dependencies recursively, starting only from a few elementary
tools and Python

Supports multiple versions (variants) of a single library

Lots of awesome features, but also very simple:

spack install trilinos

22



spack

Some useful commands:

• install – installs package

• info – lists package info, including available options

• load – loads installed package (avoids conflicts)

• list – query available packages

• find – query installed packages

• env – manage environments

More: https://spack.readthedocs.io/en/latest/

23

https://spack.readthedocs.io/en/latest/


Spack: variants

In Spack parlance, “variant” refers to a concrete configuration
of a library, which includes:

• The version
• The compiler which was used to build it
• The options passed to the installation

Multiple variants can coexist simultaneously

Example:

trilinos@13.4.0^gcc@12.1.0 +rol +openmp stdcxx=17

24



Q&A

25



Exercise: matrix-free FEM operator
evaluation



FEM: truss

Element

Klocal =
AE
L


c2 cs −c2 −cs

cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2


, s = y2 − y1

L
, c = x2 − x1

L

26



Matrix-free FEM operator

The evaluation of a matrix-free y = Ax operator follows the
gather-scatter pattern:

xg xl yl = Klxl yg

27


	Parallelism tidbits
	Sharing resources with slurm
	Building libraries & managing dependencies with spack
	Exercise: matrix-free FEM operator evaluation

