
Multithreading - part 1
Lecture 4 We are Legion, for we are many

Stanisław Gepner
18th April, 2023

Some general things to start with

Introduction

During next three meetings we will consider the bread and butter of
HPC - the parallelisation.

Parallelization, parallel or concurrent execution or processing (or
whatever the name) is based on the use of more than one
processing unit (CPU) to perform a task at hand. For us, coming from
the computational sciences background this means applying a
number of computing cores to shorten the time needed to obtain
results. Sometimes, when problems are very large, parallelization
might be the only way to handle the computational problem. We
note, that for programmers working on the development of operating
systems, user interfaces or general purpose user applications, while
general efficiency might still be important, parallel processing might
have a different goal. It might be used to enable responsiveness of
the system to the user when under load. But this remains beyond
our simple, computing needs.

1

Why parallel?

We will start with stating that the true power of computing
comes not from the processing power of a single CPU, but from
the ability of processors working together in a joint effort.
There are many reasons why it is more convenient to connect
many processors to work together rather than to produce a
single all powerful processor (or computer) to solve our
problem.

2

Why parallel?

Let’s start with an illustrative example, and show that some
problems are simply to large to be handled on a single
computer.

Now is the time to show the submarine example.

3

Why parallel?

The reason we wish to use some form of parallelism is to be
able to perform tasks faster, or to be able to perform them at
all. Some tasks are easy to parallelize, some less so.

Example:

• I/O operations
• Processing pixels

4

Different types of parallelization

In the world of parallel processing concurrency of execution
can be achived by various means. The most general definition
of parallelism is:

• Symmetric Multiprocessing - SMP
here processors remain under the control of a single OS
instance and share the main memory. (One computer -
many cores).

• Massively Parallel Processing - MPP in the cluster sense
meaning a large number of separate processors
(computers), each with a separate OS, but connected via
network.

• Hybrid approach uses the mix of the two.

5

Scaling - How to know if it is faster?

• Scaling and Speedup
• Weak vs Strong scaling
• Amdahl’s law, Gustafson’s law

6

Scaling

Scaling or scalability is ability of the system to handle more
work, either as the size of the computer (number of processing
units) or the problem being solved grows. For the computer
system, scalability is important, and means proportional
increase in computing power as resources are added. From the
perspective of a program scalability means ratio between the
actual and theoretical acceleration resulting from increased
resource allocation. The often used measure of acceleration is
speedup:

Sup =
t1
tN

(1)

Sometimes the notion of parallel efficiency is used, defined as
n =

Sup
N 7

Scaling and Speedup

Mention how do we measure S = t1
tN

0 100 200 300 400 500
0

100

200

300

400

500

N

S u
p

8

Weak and Strong Scaling

Strong scaling, corresponds to the situation where the number
of processors is increased, while the size of the problem
remains the same, leading to the reduced load per processor.
This type of scaling is considered for applications that are of
fixed size, and we wish to run them faster, yet utilising the
available resources reasonably. As we split the problem into
smaller portions and add more processors N, at one moment
the communication overhead will dominate the computational
time. In short N→ ∞ is not possible and at some level we
need to use a more powerfull CPU to speed-up the solution.

9

Weak and Strong Scaling

Weak scaling, corresponds to the situation where both the
number of processors and the work load are increased, such
that the load per processor is constant. This type of scaling is
considered for problems limited by the size (memory and not
CPU-time), and usually restricted by avalible resources. In this
case our goal is not to do calculations faste, but to perform
larger problems in the same time and using larger computers.
A problem that scales well weakly may effectively utilise
increasing number of processors, so for the perfect weak
scaling N→ ∞ is possible (our problem grows with N).

10

Amdahl’s law and the Strong Scaling (Amdahl 1967)

Amdahl postulates that speedup of a parallel application is
limited by the serial fraction of the program, that can not be
parallelized. With p-the part spent to perform the part of the
program that can be accelerated the remaining part is 1− p
(e.g. I/O operations), with s - the acceleration factor - assumed
e.g. equal to the number of cores N:

Sup =
1

(1− p) + p
s

(2)

Note: Strong scaling and Amdahl’s law is a rather pessimistic
concept.

11

Amdahl’s law

0 100 200 300 400 500
0

10

20

30

40

50

N

S u
p

p = 0.95
p = 0.9
p = 0.7
p = 0.5

12

Gustafson’s law (1988) and the Weak Scaling

Gustafson looks at a problem differently, and postulates, that
as the available resources increase, so is the size of the
problem one wants to solve. Consequently speedup S follows

Sup = (1− p) + p× N, (3)

with p representing the part of the program that can be
accelerated.

13

Gustafson’s law

0 100 200 300 400 500
0

100

200

300

N

S u
p

p = 0.95
p = 0.9
p = 0.7
p = 0.5

14

Super Linear speedup?

Sometimes things work better than expected. In case of
parallel efficiency this means better than theoretical
performance. This can happen for a number of reasons. The
most embarrassing one is sub-optimal serial implementation,
but also because of the non homogenic memory layout (L1, L2,
etc.). The problem once partitioned and distributed might
require less memory calls, and consequently super-linear
speedup can be observed.

15

Super Linear speedup?

0 100 200 300 400 500
0

100

200

300

400

500

N

S u
p

16

Thread and Process

Thread and Process
Process

• Independent from others
• Possesses a separate addressing and memory
• Any form of communication is handled by
system calls (shared memory, semaphores,
files, network, etc.)

• For us communication will be handled by an
MPI (Message Passing Interface)
implementation

Thread
• Exists within a process
• Threads share addressing space within a
process

Process 1

T1
T2

T3

Process 2

T1

T2

17

Thread

We will start our adventure with getting more than one core to
work by looking at threads. The objective is to get familiar with
the parallel way of looking at a problem using simple, available
within the C++ standard tools and than to move onto a
dedicated library that would handle thread prallelism for us.
#include <thread>

But first we need to ”see” the threads and processes that we
create. We will use pstree command line tool to do just that.

18

Starting a thread
#include <thread>
void foo(){
for(int i=0; i<10; ++i){
cout << "foo sleeps " << i << endl;
sleep (1);
}

}
void bar(int x){
for(int i=0; i<10; ++i){
cout << "bar x=" << x << " bar sleeps "
<< i << endl;
sleep (1);
}

}
...
std::thread first (foo);
std::thread second (bar,0);

m
ain

thread

foo() bar(0)

Note: It is bad practice to initiate threads and letting them run
without guaranteeing they will terminate before the main
thread terminates - use join.

19

Threads - join & detach

• join is used block the current thread until the thread
being joined finishes

• detach separates the thread oject alowing the execution
past scope

#include <thread>

...
std::thread first (foo);
std::thread second (bar,0);
// detach first from main
first.detach()
...
//main thread does sth
...
// wait for second to terminate
second.join()

first terminates

m
ain

thread

foo() bar(0)

main
waits for
second

20

Examine and run the code

See the code in the repository, and try to compile and run
thread1.cpp and thread2.cpp. Is all working as it should?

21

With thread power comes thread
responsibility
Uncle Ben

Problems with threads and how to avoid them

• Race condition.
• Atomic operations (RMW)
• Mutex - mutual exclusion lock.

22

Accessing resources - race condition

• Threads spawn within a process and share memory and
other resources.

• The most dreaded problem is the so called ”race
condition”.

• A data race (race condition) occurs if multiple threads
access an object and at least one of them modifies it.

• Thread synchronisation is critical to avoid UB and crashes.

Compile and run thread3.cpp

23

Atomic operations (operacja niepodzielna)

Atomic operation are not interrupted by concurrent operations.
That is Read-Modify-Write trio is performed - Kuba was talking
about grabbing stuff from memory to cache operating on and
putting back. This is enforced by hardware and guarantees that
once an atomic operation starts it is finished before
interruption. This will allow to place ’locks’ in the code.

Compare the code below using https://godbolt.org/
#include <atomic>

void a(int &a)
{

a++;
}

#include <atomic>

void b(std::atomic<int> &a)
{

a++;
}

Do you notice difference?

24

Atomic operations

The main takeaway from this experiment is that modern CPUs
have direct support for atomic integer operations, for example
the LOCK prefix in x86, and std::atomic basically exists as a
portable interface to those instructions. Note: std::atomic
works for integers, see the effect on doubles, does it work.

Task: Use thread3.cpp as a tempate and modify it using
std::atomic. Ist the UB still a problem? Does it work for
doubles?

25

Mutex - mutual exclusion lock

We have seen that concurrent access
to a shared resource can lead to UB
and must be avoided. The region that
this can happen is called critical
section and should be protected from
being accessed at the same time. The
locking mechanism is called mutex.
See thread4.cpp, compile it and run.
Mutex allows to define the critical
section and protects it from
concurrent access.

Critical Section

Thread 1 Thread 2

26

TBB

Thread Building blocks

TBB is a threading library designed to be easy to use. In a
sense it is to threads what STL is to data containers, a template
library to ease creation of threads, maintaince, load balancing
and scheduling of work.

TBB is free, portable, relatively easy and in principle allows to
add parallelism to existing codes.

We will have a look at two TBB constructs parallel_for and
parallel_reduce and apply both to parallelize two types of
problems.

27

Tasks

An embarrassingly parallel problem

We are going to start with a problem, that is considered to be
”embarrassingly parallel”. This means it is, by it’s nature very
easy to perform in parallel, mostly because of data locality and
independence of operations performed by each of the working
parties.

Example: Consider a very long vector y.
1. Fill it with values that are the result of the following (making
no sense, but appropriately complicated) expression:
yi = sin(xπi) ∗ cos(x

π
i) ∗ tan(x

π
i)− atan(exp(a)/(a+ 1)), for some

evenly distributed x.
2. Find the average off all yi

Use serial.cpp

28

parallel_for

We will now parallelize the first part of our problem using the
tbb::parallel_for.
tbb::parallel_for(range, kernel);

range - A range over which to iterate.

kernel - a function that takes as argument the range to iterate
through.

Note: Do a race condition, show performance degeneration.

29

False Sharing

We will now illustrate a situation which can lead to
performance degradation and stems from the fact that values
used by different threads might be placed to close to each
other in memory.

See the tbb_flase_sharing.cpp

30

parallel_reduce

Taks: Suplement the code by adding summation over all
elements of y.
double sum = 0;
for (double val : y)
{

sum += val;
}

This summation can not be parallelized using parallel_for
since now there is a shared variable. We could use a mutex, or
make use of tbb::parallel_reduce.
auto result =

tbb::parallel_reduce(range, identity_value,
kernel, reduction_function);

31

range - as before
identity_value - identity value for reduction, 0 for summation, 1
for multiplication reduction_function - standard reduction
function (a class with member function operator())
kernel - function that performs the reduction

32

More complex example

Solve linear advection problem ∂u
∂t + c ∂u∂x = 0, with periodic

boundary conditions and an appropariate initial condition.

33

	Some general things to start with
	Thread and Process
	With thread power comes thread responsibility Uncle Ben
	TBB
	Tasks

