
Introduction to HPC
Lecture 3

Jakub Gałecki



Agenda

Front end – recap

Back end overview, ILP

SIMD

Vector registers and instructions

Compiler intrinsics

Leveraging SIMD-aware libraries: Eigen

1



The front end

The front end is the part of the CPU which fetches and decodes
instructions and submits them to be executed by the back end

To use an (imperfect) analogy: the front end is the waiter, the
back end is the cook

Consists of:

• L1I cache
• Fetch unit
• Decode unit
• Branch predictor
• ...

2



Goals for today

Explain how a CPU can execute 16 DPFlops per cycle
(newer ones can do 32)

Complete our mental model of the CPU

Show that single core has significant parallelism

See how to leverage this in practice

3



CPU back end – an overview



CPU back end

The back end executes the instructions (µops) emitted by the
front end

Modern CPUs are superscalar: they can emit and execute more
than 1 instruction per cycle

We refer to the circuits responsible for actually executing the
instructions as execution units

Execution units:

• independent – Instruction Level Parallelism
• each one can do a subset of operations
• may be pipelined (depending on the operation)

4



Hardware optimizations

Out-of-order execution:

• execution order is dynamically determined by the
scheduler

• goal: saturate the execution units
• has to maintain correctness

Register renaming:

• reduces data hazards

Store buffer:

• helps avoid stalls when waiting for writes to complete

5



CPU block diagram example

Source: https://en.wikichip.org/w/images/7/7e/skylake_block_diagram.svg

6

https://en.wikichip.org/w/images/7/7e/skylake_block_diagram.svg


SIMD



SIMD

SIMD == Single Instruction Multiple Data

It is very often the case that we want to perform the same
operation on many pieces of data (e.g. process an array). It
would greatly speed up our program if we could process it in
chunks, not element by element.

7



SIMD – a trivial example

Consider the following code:

int a = 0b0101, b = 0b0001;
int c = a ^ b; // 0b0100

Bitwise xor on a and b does 32 xors on the bits of these
integers. How many instructions does it take the CPU?

xor eax, esi

SIMD generalizes of this concept to more complex types

It is actually a very old idea (Cray-1)

CPU + SIMD == vectorization

8



Vectorization

What do we need to make this happen?

• Vector registers (e.g. ymm0 – ymm15)
• Vector execution units (see block diagram)
• Vector instructions (see next slide)

It would also be great to have compiler support and some way
to access vector operations without explicitly writing assembly
code

SSE (Streaming SIMD Extension) have been around for over 20
years, with further extensions (SSE[2, 3, 4], AVX, AVX2, AVX-512,
others...) being added.

9



Vector instruction examples

Name Explanation

vmovapd move aligned packed double

vmovupd move unaligned packed double

vaddpd vectorized 256b add

vmulpd vectorized 256b multiply

vfmadd132pd vectorized fused multiply-add

vpermpd permute (shuffle) values in 256b register

vmovddup duplicate even-indexed elements

10



Live demo

https://godbolt.org/z/5bxbqe85M

11

https://godbolt.org/z/5bxbqe85M


SoA vs. AoS

Data layout matters

SoA: using Points = vector< array< double, 3 > >

SoA: using Points = array< vector< double >, 3 >

To leverage SIMD, we need to load in contiguous chunks of data

For SIMD, SoA > AoS

The eternal struggle of performance vs. maintainability

12



Compiler intrinsics

Getting the compiler to generate the optimal vectorized
assembly can be tricky

• we may know more than the compiler
• compilers aren’t perfect (and that’s ok)

Compiler intrinsics bridge the gap between C(++) and assembly

• C types representing vector registers
• C functions which directly map to assembly instructions
• Transparent to the compiler – optimization is possible

13



Live demo

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

(offline version available for download)

14

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


Note

What we did up until now was fairly platform-specific

Different CPU architectures have different vector extensions

Automatic vectorization can work better or worse, depending
on the compiler

Now that we understand what’s happening under the hood,
let’s take a step towards more easy-to-use, cross-platform
solutions...

15



Eigen



Eigen

Eigen is a C++ linear algebra library

Combines a friendly, Matlab-like syntax with the performance
of C++

Vectorized and optimized for most platforms under the hood

Thread-parallelized (though we will not use this capability just
yet)

Header only (no installation required)

Code + docs: https://eigen.tuxfamily.org/dox/

Side note: some GPU support

16

https://eigen.tuxfamily.org/dox/


Simple Eigen example

#include <iostream>
#include <Eigen/Dense>

int main()
{
Eigen::MatrixXd m(2,2);
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1);
std::cout << m << '\n';

}

17



Summary

Modern CPUs can execute more than 1 instruction per
cycle

We can leverage vectorization to significantly speed up the
processing of arrays of data

SoA > AoS (for SIMD)

There are different ways of accessing SIMD capabilities

We can leverage SIMD-aware libraries (e.g. Eigen) to get
the performance without the messy code

18



Key takeaways

→ CPUs are highly parallel within a single core

→ High-performance software must be tailored
to the hardware

→ Leverage libraries, don’t hand-code

19



Q&A

20


	CPU back end – an overview
	SIMD
	Eigen

