
Introduction to HPC
Lecture 2

Jakub Gałecki



Agenda

• CPU architecture crashcourse

• Assembly language – just a taste

• The problem with branching

• Memory cache

• The TLB

• Memory alignment

• Case study: the Goto algorithm

1



CPU architecture – a primer



The CPU

CPU = Central Processing Unit

It is the brain of the computer

But that’s a bit vague...

2



The CPU

3



The CPU

But that was too specific...

4



The computer

Let’s start by placing things in context. The (modern) computer
consists of:

• The CPU
• RAM
• GPU (last 2 lectures)
• The hard drive (whether HDD or SSD is irrelevant to us)
• I/O devices
• ...

5



The CPU

Fundamentally, the CPU performs the following tasks:

• Fetches instructions
• Decodes instructions
• Executes instructions

How does it know where to fetch the instructions from: the
program counter.

Examples of instructions:

• arithmetic operation
• read/write from/to memory
• conditional jump

Instructions usually operate on operands (arguments)

6



Registers

Small (e.g. 64 bit) volatile memory units

Most instructions involve data stored in registers

Registers have zero latency to access

Examples:

• General purpose
• RFLAGS
• Control
• Debug
• Vector (spoiler alert)

7



Registers of the x86-64 ISA

8



Hello, World! in x86 assembly

.LC0:
.string "Hello, World!\n"

main:
push rbp
mov rbp, rsp
mov edi, OFFSET FLAT:.LC0
call puts
mov eax, 0
pop rbp
ret

https://godbolt.org/z/or5Tz3cEb

9

https://godbolt.org/z/or5Tz3cEb


The pipeline

Transistor reaction speed is not instantaneous.

• Gate delay: d
• Desired clock rate: f
• Theoretical max gate chain length: 1/df

If we want fast clock frequencies, we have a hard, physical limit
on the complexity of our circuit.

The solution: pipelining

We can break the instructions down into stages and execute 1
stage per cycle. Different stages of subsequent instructions are
executed concurrently!

10



The pipeline

Simplified example, 5 stage pipeline:

Problem: what happens when instruction n+ 1 depends on the
result of instruction n?

11



Hazards

Pipelining introduces potential delays when subsequent
operations depend on one another

• Structural hazard – resource conflict
• Data hazard – logical dependency between instructions

• Read-after-write
• Write-after-read
• Write-after-write

• Control hazard – control flow depends on result of
previous instruction

We should keep these in mind when programming, although
the hardware and compiler do most of the heavy lifting.

12



Example

What kind of hazard is this?

13



How to avoid hazards?

• Structural hazards: get better CPU (sorry)

• Data hazards: compiler optimization,
out-of-order execution, register renaming,
inline assembly if we’re feeling dangerous

• Control hazards: branch prediction, write
better code (stay tuned)

14



A branching example

.LC0:
.string "Hello, World!"

.LC1:
.string "So many arguments :o"

main:
sub rsp, 8
cmp edi, 1
jle .L6
mov edi, OFFSET FLAT:.LC1
call puts

.L3:
xor eax, eax
add rsp, 8
ret

.L6:
mov edi, OFFSET FLAT:.LC0
call puts
jmp .L3

https://godbolt.org/z/5sWsYcvTd

15

https://godbolt.org/z/5sWsYcvTd


Branch prediction, speculative execution

The problem with branching: the CPU doesn’t even know which
instruction to fetch until some previous instruction executes

Control hazard == ”Data hazard on steroids”

The solution: take a guess and see what happens

• Correct guess: no stall, no performance penalty
• Incorrect guess: pipeline flush, undo changes – expensive

We need to try to be predictable.

Complete talk on the subject: https://youtu.be/g-WPhYREFjk

16

https://youtu.be/g-WPhYREFjk


Live demo

17



Accessing memory



DRAM

DRAM == Dynamic Random Access Memory

Very large – up to hundreds of GB

Very slow to access – hundreds of cycles

18



Cache

Cache == fast, on-die memory

Usually several levels, nowadays: L1I, L1D, L2, L3

Smaller→faster

19



Memory latency

This is, of course, dependent on the specific CPU model, but
the order of magnitude for modern CPUs is as follows:

Memory hierarchy component Latency [cycles]

Register 0

L1 Cache 4

L2 Cache 10-25

L3 Cache ~40

Main memory 200+

Source: Bakhvalov, D. (2020). Performance Analysis and Tuning on Modern CPUs.

20



Cacheline

The cache does not operate on individual bytes, but rather on
sets of bytes, called cachelines.

The size of a cacheline on modern CPUs is 64B.

This has consequences:

• Aligning data to cache can increase performance
• Accessing neighboring data is faster
• Potential pitfall for concurrent programs (false sharing)

21



How do I use this?

There is no instruction for “write N bytes from memory to LX
cache”*

We have to structure our data access so that it is naturally
cache-friendly

Spatial locality:

• Subsequent addresses are likely to be on the same
cacheline

• The CPU can detect access patterns and prefetch our data

Temporal locality:

• Least recently used cacheline gets evicted first
• Data which was recently accessed is likely still in cache

22



Live demo

23



Virtual vs physical memory

Data is ultimately represented by electrons residing in the
DRAM die – physical address

Our program references memory via virtual addresses

To de-conflict different processes, the OS translates virtual
addresses to physical addresses

The CPU has special hardware which helps with translation

For improved efficiency, memory is divided into 4kB* pages

24



The TLB

TLB = Translation Lookaside Buffer

Cache for the page translation process

TLB size: 1536 pages

TLB hit time: ≤1 cycle

TLB miss penalty: 10-100 cycles

Memory thrashing for large working sets with random memory
access

Usually not an issue

25



Alignment

We say address i is aligned to a (or has alignment a) iff

i mod a = 0

where a must be a power of 2. For example:

• 0xa0 is aligned to 16
• 0x0777b2 is aligned to 2

CPUs are much better at accessing data which is aligned to its
natural alignment, i.e., a multiple of its size.

For usual cases, this is handled by the compiler with padding:
https://godbolt.org/z/39aWbGoKW.

We can use alignas or aligned allocation to override the
defaults. We will soon see why this may be desired.

26

https://godbolt.org/z/39aWbGoKW


Case study: Goto algorithm

Author: Kazushige Goto (early 2000’s)

Matrix-matrix multiply algorithm explicitly catering to the 3
level cache memory hierarchy

Slice & dice approach

General structure: simple, no CS PhD required

Micro-kernel: detailed knowledge of the CPU architecture is
required

Fantastic explanation: https://youtu.be/07SMaudtH6k

27

https://youtu.be/07SMaudtH6k


To the whiteboard!

28



Summary

• CPU architecture 101

• Assembly 101

• CPUs are pipelined

• Avoid unpredictable branches

• Cache is king

29



Key takeaways

→ Want performance? Know your hardware!

→ The speed of feeding the data to the CPU is
equaly as important as the speed of
processing the data

→ Break down the problem, optimize the
kernel

30



Q&A

31


	CPU architecture – a primer
	Accessing memory

