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Agenda

• CPU architecture crashcourse

• Assembly language – just a taste

• The problem with branching

• Memory cache

• The TLB

• Memory alignment

• Case study: the Goto algorithm
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CPU architecture – a primer



The CPU

CPU = Central Processing Unit

It is the brain of the computer

But that’s a bit vague...
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The CPU
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The CPU

But that was too specific...
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The computer

Let’s start by placing things in context. The (modern) computer
consists of:

• The CPU
• RAM
• GPU (last 2 lectures)
• The hard drive (whether HDD or SSD is irrelevant to us)
• I/O devices
• ...
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The CPU

Fundamentally, the CPU performs the following tasks:

• Fetches instructions
• Decodes instructions
• Executes instructions

How does it know where to fetch the instructions from: the
program counter.

Examples of instructions:

• arithmetic operation
• read/write from/to memory
• conditional jump

Instructions usually operate on operands (arguments)
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Registers

Small (e.g. 64 bit) volatile memory units

Most instructions involve data stored in registers

Registers have zero latency to access

Examples:

• General purpose
• RFLAGS
• Control
• Debug
• Vector (spoiler alert)
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Registers of the x86-64 ISA
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Hello, World! in x86 assembly

.LC0:
.string "Hello, World!\n"

main:
push rbp
mov rbp, rsp
mov edi, OFFSET FLAT:.LC0
call puts
mov eax, 0
pop rbp
ret

https://godbolt.org/z/or5Tz3cEb
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The pipeline

Transistor reaction speed is not instantaneous.

• Gate delay: d
• Desired clock rate: f
• Theoretical max gate chain length: 1/df

If we want fast clock frequencies, we have a hard, physical limit
on the complexity of our circuit.

The solution: pipelining

We can break the instructions down into stages and execute 1
stage per cycle. Different stages of subsequent instructions are
executed concurrently!
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The pipeline

Simplified example, 5 stage pipeline:

Problem: what happens when instruction n+ 1 depends on the
result of instruction n?
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Hazards

Pipelining introduces potential delays when subsequent
operations depend on one another

• Structural hazard – resource conflict
• Data hazard – logical dependency between instructions

• Read-after-write
• Write-after-read
• Write-after-write

• Control hazard – control flow depends on result of
previous instruction

We should keep these in mind when programming, although
the hardware and compiler do most of the heavy lifting.
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Example

What kind of hazard is this?
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How to avoid hazards?

• Structural hazards: get better CPU (sorry)

• Data hazards: compiler optimization,
out-of-order execution, register renaming,
inline assembly if we’re feeling dangerous

• Control hazards: branch prediction, write
better code (stay tuned)
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A branching example

.LC0:
.string "Hello, World!"

.LC1:
.string "So many arguments :o"

main:
sub rsp, 8
cmp edi, 1
jle .L6
mov edi, OFFSET FLAT:.LC1
call puts

.L3:
xor eax, eax
add rsp, 8
ret

.L6:
mov edi, OFFSET FLAT:.LC0
call puts
jmp .L3

https://godbolt.org/z/5sWsYcvTd
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Branch prediction, speculative execution

The problem with branching: the CPU doesn’t even know which
instruction to fetch until some previous instruction executes

Control hazard == ”Data hazard on steroids”

The solution: take a guess and see what happens

• Correct guess: no stall, no performance penalty
• Incorrect guess: pipeline flush, undo changes – expensive

We need to try to be predictable.

Complete talk on the subject: https://youtu.be/g-WPhYREFjk
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Live demo
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Accessing memory



DRAM

DRAM == Dynamic Random Access Memory

Very large – up to hundreds of GB

Very slow to access – hundreds of cycles
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Cache

Cache == fast, on-die memory

Usually several levels, nowadays: L1I, L1D, L2, L3

Smaller→faster
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Memory latency

This is, of course, dependent on the specific CPU model, but
the order of magnitude for modern CPUs is as follows:

Memory hierarchy component Latency [cycles]

Register 0

L1 Cache 4

L2 Cache 10-25

L3 Cache ~40

Main memory 200+

Source: Bakhvalov, D. (2020). Performance Analysis and Tuning on Modern CPUs.
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Cacheline

The cache does not operate on individual bytes, but rather on
sets of bytes, called cachelines.

The size of a cacheline on modern CPUs is 64B.

This has consequences:

• Aligning data to cache can increase performance
• Accessing neighboring data is faster
• Potential pitfall for concurrent programs (false sharing)
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How do I use this?

There is no instruction for “write N bytes from memory to LX
cache”*

We have to structure our data access so that it is naturally
cache-friendly

Spatial locality:

• Subsequent addresses are likely to be on the same
cacheline

• The CPU can detect access patterns and prefetch our data

Temporal locality:

• Least recently used cacheline gets evicted first
• Data which was recently accessed is likely still in cache
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Live demo
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Virtual vs physical memory

Data is ultimately represented by electrons residing in the
DRAM die – physical address

Our program references memory via virtual addresses

To de-conflict different processes, the OS translates virtual
addresses to physical addresses

The CPU has special hardware which helps with translation

For improved efficiency, memory is divided into 4kB* pages
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The TLB

TLB = Translation Lookaside Buffer

Cache for the page translation process

TLB size: 1536 pages

TLB hit time: ≤1 cycle

TLB miss penalty: 10-100 cycles

Memory thrashing for large working sets with random memory
access

Usually not an issue
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Alignment

We say address i is aligned to a (or has alignment a) iff

i mod a = 0

where a must be a power of 2. For example:

• 0xa0 is aligned to 16
• 0x0777b2 is aligned to 2

CPUs are much better at accessing data which is aligned to its
natural alignment, i.e., a multiple of its size.

For usual cases, this is handled by the compiler with padding:
https://godbolt.org/z/39aWbGoKW.

We can use alignas or aligned allocation to override the
defaults. We will soon see why this may be desired.
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Case study: Goto algorithm

Author: Kazushige Goto (early 2000’s)

Matrix-matrix multiply algorithm explicitly catering to the 3
level cache memory hierarchy

Slice & dice approach

General structure: simple, no CS PhD required

Micro-kernel: detailed knowledge of the CPU architecture is
required

Fantastic explanation: https://youtu.be/07SMaudtH6k
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To the whiteboard!
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Summary

• CPU architecture 101

• Assembly 101

• CPUs are pipelined

• Avoid unpredictable branches

• Cache is king
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Key takeaways

→ Want performance? Know your hardware!

→ The speed of feeding the data to the CPU is
equaly as important as the speed of
processing the data

→ Break down the problem, optimize the
kernel
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Q&A
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